

Course Profile - Department of Physics

Course Number: PHYS 454	Course Title: Solid State Physics
Required / Elective : Elective	Pre / Co-requisites: PHYS 333, PHYS 344
Catalog Description:	Textbook / Required Material :
Crystal diffraction; crystal binding; phonons and lattice vibrations; thermal, acoustic and optical properties; free electron model; quantum theory of solids, energy bands, tight binding approximation; semiconductors; diamagnetism and paramagnetism; ferromagnetism and anti-ferromagnetism.	Charles Kittel, <i>Introduction to Solid State Physics</i> , 8 th <i>Edition</i> , John Wiley & Sons, 2005.

Course Structure / Schedule: (3+0+0) 3 / 5 ECTS

Extended Description:

Crystal structure: periodic array of atoms, fundamental types of lattices, crystal planes, simple crystal structures. Diffraction of waves by crystals: Bragg law, reciprocal lattice, Brillouin zones. Crystal binding: crystals of inert gasses, ionic crystals, covalent crystals, metals, hydrogen bonds. Phonons: l vibrations of crystals with one and two atoms per primitive cell. Thermal properties: phonon heat capacity, thermal expansion, thermal conductivity. Free electron gas: energy levels, heat capacity, thermal conductivity, electrical conductivity and Ohm's law, Hall effect. Energy bads: nearly free electron model, Bloch functions, Kronig-Penney model, wave equation of electron in a periodic potential. Semiconductor: band gap, equations of motion, holes, effective mass, intrinsic carrier concentration, impurity conductivity, thermoelectric effects. Fermi surfaces: reduced and periodic zone schemes, construction of Fermi surfaces, tight binding method. Magnetic properties: diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism.

	Computer usage: Students use computational and
Design content : None	graphics software to recognize the qualitative
	behavior of macroscopic quantities describing solids.

Course Learning Outcomes [relevant program outcomes in brackets]:

On successful completion of this course students will be able to

- 1. identify the lattice and crystal structures in one, two and three dimensions [1];
- 2. interpret the phonon dispersion curves of monatomic and diatomic chains [1,2];
- 3. demonstrate a knowledge of how the presence of the periodic crystal potential changes the band structure of electrons in solids [1,2,6];
- 4. describe the electrons' and phonons' contributions to electrical and thermal properties of solids
- 5. compare free electron and nearly free electron theories in terms of their strengths and weaknesses [6];
- 6. develop an understanding of the basic properties of semiconductors [1,7];
- 7. discuss the basic magnetic properties of solids [1,5, 6].

Recommended reading:

Neil W. Ashcroft and N. David. Mermin, *Solid State Physics*, Saunders College Publishing, 1976.

Teaching methods:

Lectures of approximately 3 hours per week, pre-readings, and homework problems.

Assessment methods:

Two mid-term examinations, a final examination, weekly homework assignments, and quizzes.

Student workload:

Pre-reading	7 hrs
Lectures, discussions	45 hrs
Exercise sessions	0 hrs
Homework	25 hrs
Independent work	46 hrs
Laboratory work	0 hrs
Examinations	4 hrs

125 hrs ... to match 25 x 5 ECTS

Prepared by: İsmail Karakurt, 01.02.2010	Revision Date :
--	-----------------